Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 5, Pages 901–920
DOI: https://doi.org/10.33048/smzh.2024.65.510
(Mi smj7899)
 

Control theory problems and the Rashevskii–Chow theorem on a Cartan group

A. V. Greshnova, R. I. Zhukovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
DOI: https://doi.org/10.33048/smzh.2024.65.510
Abstract: We consider the problem of controlling the nonlinear $5$-dimensional systems that are induced by horizontal vector fields $X$ and $Y$ which together with their commutators generate some Cartan algebra depending linearly on two piecewise constant controls. We also study the properties of solutions to the systems on interpreting a solution as a horizontal $k$-broken line $L_k$ on the canonical Cartan group $\Bbb K$, where the segments of $L_k$ are segments of integral curves of the vector fields of the form $aX+bY$ with $a,b=\mathrm{const}$. As regards $\Bbb K$, we prove that $4$ is the minimal number $N_{\Bbb K}$ such that every two points $u,v\in\Bbb K$ can be joined by some $L_k$ with $k\leq N_{\Bbb K}$. Thus, we obtain the best version of the Rashevskii–Chow theorem on the Cartan group. We also show that the minimal number of segments of a closed horizontal broken line on $\Bbb K$ equals 6.
Keywords: horizontal vector fields, Carnot group, Cartan group, horizontal broken line, vertex, Rashevskii–Chow theorem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).
Received: 10.06.2024
Revised: 04.07.2024
Accepted: 20.08.2024
English version:
Siberian Mathematical Journal, 2024, Volume 65, Issue 5, Pages 1096–1111
DOI: https://doi.org/10.1134/S0037446624050100
Document Type: Article
UDC: 517
MSC: 35R30
Language: Russian
Citation: A. V. Greshnov, R. I. Zhukov, “Control theory problems and the Rashevskii–Chow theorem on a Cartan group”, Sibirsk. Mat. Zh., 65:5 (2024), 901–920; Siberian Math. J., 65:5 (2024), 1096–1111
Citation in format AMSBIB
\Bibitem{GreZhu24}
\by A.~V.~Greshnov, R.~I.~Zhukov
\paper Control theory problems and the~Rashevskii--Chow theorem on a~Cartan group
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 5
\pages 901--920
\mathnet{http://mi.mathnet.ru/smj7899}
\transl
\jour Siberian Math. J.
\yr 2024
\vol 65
\issue 5
\pages 1096--1111
\crossref{https://doi.org/10.1134/S0037446624050100}
Linking options:
  • https://www.mathnet.ru/eng/smj7899
  • https://www.mathnet.ru/eng/smj/v65/i5/p901
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025