Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 6, Pages 1039–1060
DOI: https://doi.org/10.33048/smzh.2024.65.601
(Mi smj7909)
 

This article is cited in 2 scientific papers (total in 2 papers)

Representability of matrices over commutative rings as sums of two potent matrices

A. N. Abyzov, D. T. Tapkin

Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (348 kB) Citations (2)
References:
DOI: https://doi.org/10.33048/smzh.2024.65.601
Abstract: We propose some general approach to studying the problem for the representability of every element $a$ in a field $F$ in the form $a = f + g$, with $f^{q_{1}} = f$ and $g^{q_{2}} = g$, where $q_1, q_2 > 1$ are fixed naturals, to imply the analogous representability of every square matrix over $F$. As an application, we describe the fields and commutative rings with $2 \in U(R)$ such that every square matrix over them is the sum of a $q_{1}$-potent matrix and a $q_{2}$-potent matrix for some small values of $q_{1}$ and $q_{2}$.
Keywords: potent elements, finite fields, matrices over commutative rings.
Funding agency Grant number
Russian Science Foundation 23-21-10086
The work was supported by the Russian Science Foundation and the Cabinet of Ministers of the Republic of Tatarstan (Project 23–21–10086).
Received: 13.07.2024
Revised: 20.09.2024
Accepted: 23.10.2024
English version:
Siberian Mathematical Journal, 2024, Volume 65, Issue 6, Pages 1227–1245
DOI: https://doi.org/10.1134/S0037446624060016
Document Type: Article
UDC: 512.55
MSC: 35R30
Language: Russian
Citation: A. N. Abyzov, D. T. Tapkin, “Representability of matrices over commutative rings as sums of two potent matrices”, Sibirsk. Mat. Zh., 65:6 (2024), 1039–1060; Siberian Math. J., 65:6 (2024), 1227–1245
Citation in format AMSBIB
\Bibitem{AbyTap24}
\by A.~N.~Abyzov, D.~T.~Tapkin
\paper Representability of matrices over~commutative rings as sums of two potent matrices
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 6
\pages 1039--1060
\mathnet{http://mi.mathnet.ru/smj7909}
\transl
\jour Siberian Math. J.
\yr 2024
\vol 65
\issue 6
\pages 1227--1245
\crossref{https://doi.org/10.1134/S0037446624060016}
Linking options:
  • https://www.mathnet.ru/eng/smj7909
  • https://www.mathnet.ru/eng/smj/v65/i6/p1039
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025