|
Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 1, Pages 3–19 DOI: https://doi.org/10.33048/smzh.2025.66.101
(Mi smj7923)
|
|
|
|
Function spaces of $l_{p(\cdot)}$ $(l_{q(\cdot)})$-type and embedding theorems for spaces with variable smoothness
A. N. Artyushin Novosibirsk State University, Novosibirsk, Russia
DOI:
https://doi.org/10.33048/smzh.2025.66.101
Abstract:
We define the iterated (quasi)normed function spaces of $L_{p(\cdot)}$ $(L_{q(\cdot)}( \dots))$-type with exponents depending on all variables. Also, we prove an analog of the Minkowski inequality for mixed norms and a multiplicative interpolation type inequality in these spaces and use the relevant theorems for proving an embedding theorem for the function spaces with variable smoothness depending on different directions.
Keywords:
fractional derivatives, variable smoothness, variable exponent, iterated spaces.
Received: 05.12.2024 Revised: 05.12.2024 Accepted: 25.12.2024
Citation:
A. N. Artyushin, “Function spaces of $l_{p(\cdot)}$ $(l_{q(\cdot)})$-type and embedding theorems for spaces with variable smoothness”, Sibirsk. Mat. Zh., 66:1 (2025), 3–19; Siberian Math. J., 66:1 (2025), 1–15
Linking options:
https://www.mathnet.ru/eng/smj7923 https://www.mathnet.ru/eng/smj/v66/i1/p3
|
| Statistics & downloads: |
| Abstract page: | 67 | | References: | 21 | | First page: | 13 |
|