|
Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 2, Pages 213–218 DOI: https://doi.org/10.33048/smzh.2025.66.207
(Mi smj7939)
|
|
|
|
One question of the theory of numbered groups
N. Kh. Kasymov Mirzo Ulugbek National University, Tashkent, Uzbekistan
DOI:
https://doi.org/10.33048/smzh.2025.66.207
Abstract:
We show that the kernel of every numbered group is a permutation computable equivalence. We also prove the existence of a permutation computable equivalence over which no group is definable.
Keywords:
numbered group, definability of a group over equivalence, permutation computable equivalence.
Received: 15.08.2024 Revised: 28.01.2025 Accepted: 25.02.2025
Citation:
N. Kh. Kasymov, “One question of the theory of numbered groups”, Sibirsk. Mat. Zh., 66:2 (2025), 213–218; Siberian Math. J., 66:2 (2025), 298–302
Linking options:
https://www.mathnet.ru/eng/smj7939 https://www.mathnet.ru/eng/smj/v66/i2/p213
|
| Statistics & downloads: |
| Abstract page: | 51 | | References: | 27 | | First page: | 8 |
|