Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 4, Pages 596–612
DOI: https://doi.org/10.33048/smzh.2025.66.404
(Mi smj7965)
 

This article is cited in 3 scientific papers (total in 3 papers)

New properties of composition operators in Sobolev spaces on Riemannian manifolds

S. K. Vodopyanov

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
DOI: https://doi.org/10.33048/smzh.2025.66.404
Abstract: An equivalent description is obtained for homeomorphisms $\varphi$ of a domain $\Omega$ in a Riemannian space $\Bbb{M}$ onto a metric space $\Bbb{Y}$, which guarantees the boundedness of the composition operator from the space of Lipschitz functions $\operatorname{Lip}(\Bbb{Y})$ into the homogeneous Sobolev space on $\Bbb{M}$ with first generalized derivatives integrable to the power $1\leq q\leq\infty$, along with other new properties of such homeomorphisms. The new approach makes it possible to effectively prove a theorem on homeomorphisms of domains in an arbitrary Riemannian space $\Bbb{M}$ that induce a bounded composition operator between Sobolev spaces with first generalized derivatives. The new proof, which is considerably shorter compared to the original one, relies on a minimal set of tools and allows us to establish new properties of the homeomorphisms under study.
Keywords: Riemannian space, class of Sobolev mappings with values in a metric space, approximate differentiability, distortion of a mapping, generalized quasiconformal mapping, composition operator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF–2022–0006
The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).
Received: 04.04.2025
Revised: 24.05.2025
Accepted: 26.05.2025
English version:
Siberian Mathematical Journal, 2025, Volume 66, Issue 4, Pages 914–927
DOI: https://doi.org/10.1134/S0037446625040044
Document Type: Article
UDC: 517.518:517.54
MSC: 35R30
Language: Russian
Citation: S. K. Vodopyanov, “New properties of composition operators in Sobolev spaces on Riemannian manifolds”, Sibirsk. Mat. Zh., 66:4 (2025), 596–612; Siberian Math. J., 66:4 (2025), 914–927
Citation in format AMSBIB
\Bibitem{Vod25}
\by S.~K.~Vodopyanov
\paper New properties of composition operators in Sobolev spaces on~Riemannian~manifolds
\jour Sibirsk. Mat. Zh.
\yr 2025
\vol 66
\issue 4
\pages 596--612
\mathnet{http://mi.mathnet.ru/smj7965}
\transl
\jour Siberian Math. J.
\yr 2025
\vol 66
\issue 4
\pages 914--927
\crossref{https://doi.org/10.1134/S0037446625040044}
Linking options:
  • https://www.mathnet.ru/eng/smj7965
  • https://www.mathnet.ru/eng/smj/v66/i4/p596
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025