Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 4, Pages 613–620
DOI: https://doi.org/10.33048/smzh.2025.66.405
(Mi smj7966)
 

New examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups

J. Guoa, W. Guobc, N. V. Maslovade, D. O. Revinf

a School of Mathematics and Statistics, Hainan University, Haikou, P. R. China
b School of Mathematics and Statistics, Nantong University, Nantong, Jiangsu, P. R. China
c Department of Mathematics, University of Science and Technology of China, Hefei, P. R. China
d Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia
e Ural Federal University, Yekaterinburg, Russia
f Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
DOI: https://doi.org/10.33048/smzh.2025.66.405
Abstract: A subgroup $H$ of a group $G$ is said to be pronormal if, for every element $g \in G$, the subgroups $H$ and $H^g$ are conjugate in the subgroup $\langle H, H^g\rangle$. It is known that a substantial portion of finite simple groups possesses property $(*)$: every subgroup of odd index is pronormal in the group. To date, finite simple groups with property $(*)$ have been classified, except for finite simple linear and unitary groups subject to certain restrictions on their natural arithmetic parameters. In 2024, a classification was initiated for finite simple linear and unitary groups in which all subgroups of odd index are pronormal. The plan is to identify all possible sources of nonpronormal subgroups of odd index and then prove that there are no other such examples. In 2024, series of examples of nonpronormal subgroups of odd index were found in finite simple linear and unitary groups over fields of odd characteristic. In the present paper, we construct a new series of examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups over a field of odd characteristic.
Keywords: finite group, simple group, linear simple group, unitary simple group, pronormal subgroup, odd index.
Funding agency Grant number
National Natural Science Foundation of China 12361003
12171126
Hainan Provincial Natural Science Foundation of China 122RC543
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
The work is supported by the NNSF of China (Grants 12361003 and 12171126) and the Hainan Provincial Natural Science Foundation of China (Grant no. 122RC543). A part of the study was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0002).
Received: 27.12.2024
Revised: 02.04.2025
Accepted: 25.04.2025
English version:
Siberian Mathematical Journal, 2025, Volume 66, Issue 4, Pages 928–934
DOI: https://doi.org/10.1134/S0037446625040056
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: J. Guo, W. Guo, N. V. Maslova, D. O. Revin, “New examples of nonpronormal subgroups of odd index in finite simple linear and unitary groups”, Sibirsk. Mat. Zh., 66:4 (2025), 613–620; Siberian Math. J., 66:4 (2025), 928–934
Citation in format AMSBIB
\Bibitem{GuoGuoMas25}
\by J.~Guo, W.~Guo, N.~V.~Maslova, D.~O.~Revin
\paper New examples of nonpronormal~subgroups of~odd~index in finite simple linear and unitary groups
\jour Sibirsk. Mat. Zh.
\yr 2025
\vol 66
\issue 4
\pages 613--620
\mathnet{http://mi.mathnet.ru/smj7966}
\transl
\jour Siberian Math. J.
\yr 2025
\vol 66
\issue 4
\pages 928--934
\crossref{https://doi.org/10.1134/S0037446625040056}
Linking options:
  • https://www.mathnet.ru/eng/smj7966
  • https://www.mathnet.ru/eng/smj/v66/i4/p613
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025