Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 4, Pages 689–717
DOI: https://doi.org/10.33048/smzh.2025.66.411
(Mi smj7972)
 

Deformation of a thin elastic plate with a fixed edge and attached rods. Part 2: The spectral problem

S. A. Nazarov

Institute of Problems of Mechanical Engineering, St. Petersburg, Russia
References:
DOI: https://doi.org/10.33048/smzh.2025.66.411
Abstract: In the low-frequency range of the spectrum, we construct the asymptotics of the frequencies and modes of eigenvibrations of an isotropic and homogeneous elastic junction of thin cylindrical vertical rods and a horizontal plate. The junction surface is free of external loads everywhere except for the rigidly clamped edge of the plate. Several types of vibrations are identified, accompanied by bending deformations of the plate and/or the rods. The justification of the asymptotic formulas is based on an asymptotically sharp anisotropic weighted Korn inequality, a classical lemma on “almost eigenvalues,” and a convergence theorem for normalized eigenvalues.
Keywords: isotropic and homogeneous elastic junction of a plate and rods, boundary layers, asymptotics of eigenvalues and vector-valued eigenfunctions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 124041500009–8
This work is supported by the Ministry of Science and Higher Education of the Russian Federation (Project 124041500009–8).
Received: 14.11.2024
Revised: 14.11.2024
Accepted: 25.02.2025
English version:
Siberian Mathematical Journal, 2025, Volume 66, Issue 4, Pages 991–1016
DOI: https://doi.org/10.1134/S0037446625040111
Document Type: Article
UDC: 517.956.8:517.956:539.3(3)
MSC: 35R30
Language: Russian
Citation: S. A. Nazarov, “Deformation of a thin elastic plate with a fixed edge and attached rods. Part 2: The spectral problem”, Sibirsk. Mat. Zh., 66:4 (2025), 689–717; Siberian Math. J., 66:4 (2025), 991–1016
Citation in format AMSBIB
\Bibitem{Naz25}
\by S.~A.~Nazarov
\paper Deformation of a~thin elastic plate with a~fixed edge and attached rods. Part~2:~The~spectral~problem
\jour Sibirsk. Mat. Zh.
\yr 2025
\vol 66
\issue 4
\pages 689--717
\mathnet{http://mi.mathnet.ru/smj7972}
\transl
\jour Siberian Math. J.
\yr 2025
\vol 66
\issue 4
\pages 991--1016
\crossref{https://doi.org/10.1134/S0037446625040111}
Linking options:
  • https://www.mathnet.ru/eng/smj7972
  • https://www.mathnet.ru/eng/smj/v66/i4/p689
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025