Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2025, Volume 66, Number 4, Pages 755–771
DOI: https://doi.org/10.33048/smzh.2025.66.415
(Mi smj7976)
 

The strong $\pi$-Sylow theorem for finite simple groups of Lie type of rank $1$

V. D. Shepelevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
DOI: https://doi.org/10.33048/smzh.2025.66.415
Abstract: Let $\pi$ be a set of primes. A finite group is said to be a $\pi$-group if all prime divisors of its order belong to $\pi$. Following Wielandt, we say that for a finite group $G$ the $\pi$-Sylow theorem holds if all maximal $\pi$-subgroups of $G$ are conjugate; if the $\pi$-Sylow theorem holds for every subgroup of $G$, then $G$ is said to satisfy the strong $\pi$-Sylow theorem. The question of which finite nonabelian simple groups satisfy the strong $\pi$-Sylow theorem was posed by Wielandt in 1979. This paper completes an arithmetic description of the groups of Lie type of rank $1$ that satisfy the strong $\pi$-Sylow theorem.
Keywords: $\pi$-Sylow theorem, strong $\pi$-Sylow theorem, groups of Lie type.
Funding agency Grant number
Russian Science Foundation 24-21-00163
The research was supported by the Russian Science Foundation (Project 24–21–00163, https://rscf.ru/project/24-21-00163/).
Received: 20.02.2025
Revised: 24.05.2025
Accepted: 26.05.2025
English version:
Siberian Mathematical Journal, 2025, Volume 66, Issue 4, Pages 1049–1062
DOI: https://doi.org/10.1134/S0037446625040159
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: V. D. Shepelev, “The strong $\pi$-Sylow theorem for finite simple groups of Lie type of rank $1$”, Sibirsk. Mat. Zh., 66:4 (2025), 755–771; Siberian Math. J., 66:4 (2025), 1049–1062
Citation in format AMSBIB
\Bibitem{She25}
\by V.~D.~Shepelev
\paper The strong $\pi$-Sylow theorem for~finite~simple~groups of~Lie type of~rank~$1$
\jour Sibirsk. Mat. Zh.
\yr 2025
\vol 66
\issue 4
\pages 755--771
\mathnet{http://mi.mathnet.ru/smj7976}
\transl
\jour Siberian Math. J.
\yr 2025
\vol 66
\issue 4
\pages 1049--1062
\crossref{https://doi.org/10.1134/S0037446625040159}
Linking options:
  • https://www.mathnet.ru/eng/smj7976
  • https://www.mathnet.ru/eng/smj/v66/i4/p755
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:94
    References:33
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025