Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2021, Volume 28, Issue 2, Pages 111–120
DOI: https://doi.org/10.25587/SVFU.2021.27.52.008
(Mi svfu321)
 

Mathematical modeling

Multiscale model reduction for neutron diffusion equation

A. O. Vasileva, D. A. Spiridonova, A. V. Avvakumovb

a International Research Laboratory "Multisclae Model Reduction" Ammosov North-Eastern Federal University, 42 Kulakovsky Street, Yakutsk, 677980, Russia
b National Research Centre "Kurchatov Institute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
Abstract: Modelling of dynamic processes in nuclear reactors is carried out, mainly, on the basis of the multigroup diffusion approximation for the neutron flux. The neutron diffusion approximation is widely used for reactor analysis and applied in most engineering calculation codes.
In this paper, we attempt to employ a model reduction technique based on the multiscale method for neutron diffusion equation. The proposed method is based on the use of a generalized multiscale finite element method. The main idea is to create multiscale basis functions that can be used to effectively solve on a coarse grid. From calculation results, we obtain that multiscale basis functions can properly take into account the small-scale characteristics of the medium and provide accurate solutions. The results calculated with the GMsFEM are compared with the reference fine-grid calculation results.
Keywords: parabolic equation, neutron diffusion, multiscale simulation, generalized multiscale finite element method (GMsFEM).
Funding agency Grant number
Russian Science Foundation 19-71-00008
This work was supported by the grant of the Russian Science Foundation (№ 19-71-00008).
Received: 18.01.2021
Revised: 22.04.2021
Accepted: 26.05.2021
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: A. O. Vasilev, D. A. Spiridonov, A. V. Avvakumov, “Multiscale model reduction for neutron diffusion equation”, Mathematical notes of NEFU, 28:2 (2021), 111–120
Citation in format AMSBIB
\Bibitem{VasSpiAvv21}
\by A.~O.~Vasilev, D.~A.~Spiridonov, A.~V.~Avvakumov
\paper Multiscale model reduction for neutron diffusion equation
\jour Mathematical notes of NEFU
\yr 2021
\vol 28
\issue 2
\pages 111--120
\mathnet{http://mi.mathnet.ru/svfu321}
\crossref{https://doi.org/10.25587/SVFU.2021.27.52.008}
\elib{https://elibrary.ru/item.asp?id=46343995}
Linking options:
  • https://www.mathnet.ru/eng/svfu321
  • https://www.mathnet.ru/eng/svfu/v28/i2/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025