Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2021, Volume 28, Issue 3, Pages 5–18
DOI: https://doi.org/10.25587/SVFU.2021.81.22.001
(Mi svfu322)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Boundary value problems for the Rayleigh–Bishop equation in a quarter plane

G. V. Demidenkoab, A. A. Kudryavtsevb

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia
Full-text PDF (297 kB) Citations (2)
Abstract: We consider initial-boundary value problems for the Rayleigh–Bishop equation in a quarter plane. It is assumed that the initial-boundary value problems satisfy the Lopatinskii condition. A unique solvability in an anisotropic Sobolev space with an exponential weight is proved and an estimate for the solution is established.
Keywords: pseudohyperbolic equation, Rayleigh–Bishop equation, initial-boundary value problem, Lopatinskii condition, Sobolev space.
Received: 29.03.2021
Accepted: 26.08.2021
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
Language: Russian
Citation: G. V. Demidenko, A. A. Kudryavtsev, “Boundary value problems for the Rayleigh–Bishop equation in a quarter plane”, Mathematical notes of NEFU, 28:3 (2021), 5–18
Citation in format AMSBIB
\Bibitem{DemKud21}
\by G.~V.~Demidenko, A.~A.~Kudryavtsev
\paper Boundary value problems for the Rayleigh--Bishop equation in a quarter plane
\jour Mathematical notes of NEFU
\yr 2021
\vol 28
\issue 3
\pages 5--18
\mathnet{http://mi.mathnet.ru/svfu322}
\crossref{https://doi.org/10.25587/SVFU.2021.81.22.001}
\elib{https://elibrary.ru/item.asp?id=46670173}
Linking options:
  • https://www.mathnet.ru/eng/svfu322
  • https://www.mathnet.ru/eng/svfu/v28/i3/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025