Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2023, Volume 30, Issue 2, Pages 92–100
DOI: https://doi.org/10.25587/SVFU.2023.24.67.007
(Mi svfu386)
 

Mathematics

Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions

N. Vani, D. Vamshee Krishna, B. Rath

Gandhi Institute of Technology and Management
DOI: https://doi.org/10.25587/SVFU.2023.24.67.007
Abstract: In this paper, we obtain sharp bounds in the Zalcman conjecture for the initial coe cients, the second Hankel determinant $H_{2,2}(f) = a_2a_4 - a^2_3$ and an upper bound for the second Hankel determinant $H_{2,3}(f) = a_3a_5-a_2$ for the functions belonging to a certain subclass of analytic functions. The practical tools applied in the derivation of our main results are the coe cient inequalities of the Caratheodory class $P$.
Keywords: analytic function, upper bound, the Zalcman conjecture, univalent function, Caratheodory function.
Received: 22.02.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.54
Language: Russian
Citation: N. Vani, D. Vamshee Krishna, B. Rath, “Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions”, Mathematical notes of NEFU, 30:2 (2023), 92–100
Citation in format AMSBIB
\Bibitem{VanVamRat23}
\by N.~Vani, D.~Vamshee~Krishna, B.~Rath
\paper Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions
\jour Mathematical notes of NEFU
\yr 2023
\vol 30
\issue 2
\pages 92--100
\mathnet{http://mi.mathnet.ru/svfu386}
Linking options:
  • https://www.mathnet.ru/eng/svfu386
  • https://www.mathnet.ru/eng/svfu/v30/i2/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025