Theoretical and Applied Mechanics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theor. Appl. Mech.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theoretical and Applied Mechanics, 2017, Volume 44, Issue 1, Pages 15–34
DOI: https://doi.org/10.2298/TAM161118001E
(Mi tam18)
 

This article is cited in 3 scientific papers (total in 3 papers)

On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D

Oğul Esena, Anindya Ghose Choudhuryb, Partha Guhac

a Department of Mathematics, Gebze Technical University, Gebze-Kocaeli, Turkey
b Department of Physics, Surendranath College, Calcutta, India
c SN Bose National Centre for Basic Sciences, Salt Lake, Kolkata, India
Full-text PDF (516 kB) Citations (3)
References:
Abstract: The first integrals of the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model, and the Oregonator model are derived using the method of Darboux polynomials. It is shown that, the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model can be written in a bi-Hamiltonian/Nambu metriplectic form.
Keywords: Darboux integrability method, the reduced three-wave interaction problem, Rabinovich system, Hindmarsh–Rose model, oregonator model, metriplectic Structure, Nambu-Poisson brackets.
Received: 18.11.2016
Revised: 23.02.2017
Bibliographic databases:
Document Type: Article
MSC: 37K10, 70G45
Language: English
Citation: Oğul Esen, Anindya Ghose Choudhury, Partha Guha, “On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D”, Theor. Appl. Mech., 44:1 (2017), 15–34
Citation in format AMSBIB
\Bibitem{EseGhoGuh17}
\by O{\u g}ul~Esen, Anindya~Ghose Choudhury, Partha~Guha
\paper On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D
\jour Theor. Appl. Mech.
\yr 2017
\vol 44
\issue 1
\pages 15--34
\mathnet{http://mi.mathnet.ru/tam18}
\crossref{https://doi.org/10.2298/TAM161118001E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000406046300002}
Linking options:
  • https://www.mathnet.ru/eng/tam18
  • https://www.mathnet.ru/eng/tam/v44/i1/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theoretical and Applied Mechanics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025