Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2016, Volume 21(37), Issue 2, Pages 58–83 (Mi thsp162)  

Convoluted Brownian motion: a semimartingale approach

Sylvie Rœllya, Pierre Valloisb

a Universität Potsdam, Institut für Mathematik, Karl-Liebknecht-Str. 24-25, 14476 Potsdam OT Golm, Germany
b Universitacuté de Lorraine, Institut de Mathématiques Elie Cartan, INRIA-BIGS, CNRS UMR 7502, BP 239, 54506 Vanduvre-lès-Nancy Cedex, France
References:
Abstract: In this paper we analyse semimartingale properties of a class of Gaussian periodic processes, called convoluted Brownian motions, obtained by convolution between a deterministic function and a Brownian motion. A classical example in this class is the periodic Ornstein-Uhlenbeck process. We compute their characteristics and show that in general, they are never Markovian nor satisfy a time-Markov field property. Nevertheless, by enlargement of filtration and/or addition of a one-dimensional component, one can in some case recover the Markovianity. We treat exhaustively the case of the bidimensional trigonometric convoluted Brownian motion and the multidimensional monomial convoluted Brownian motion.
Keywords: Periodic Gaussian process, periodic Ornstein-Uhlenbeck process, Markov-field property, enlargement of filtration.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sylvie Rœlly, Pierre Vallois, “Convoluted Brownian motion: a semimartingale approach”, Theory Stoch. Process., 21(37):2 (2016), 58–83
Citation in format AMSBIB
\Bibitem{RoeVal16}
\by Sylvie R{\oe}lly, Pierre Vallois
\paper Convoluted Brownian motion: a semimartingale approach
\jour Theory Stoch. Process.
\yr 2016
\vol 21(37)
\issue 2
\pages 58--83
\mathnet{http://mi.mathnet.ru/thsp162}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3662595}
\zmath{https://zbmath.org/?q=an:1374.60065}
Linking options:
  • https://www.mathnet.ru/eng/thsp162
  • https://www.mathnet.ru/eng/thsp/v21/i2/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025