Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2017, Volume 22(38), Issue 2, Pages 34–46 (Mi thsp178)  

This article is cited in 1 scientific paper (total in 1 paper)

Negative binomial construction of random discrete distributions on the infinite simplex

Yuguang F. Ipsen, Ross A. Maller

Research School of Finance, Actuarial Studies & Statistics, Australian National University, Canberra, Australia
Full-text PDF (325 kB) Citations (1)
References:
Abstract: The Poisson-Kingman distributions, $\mathrm{PK}(\rho)$, on the infinite simplex, can be constructed from a Poisson point process having intensity density $\rho$ or by taking the ranked jumps up till a specified time of a subordinator with Lévy density $\rho$, as proportions of the subordinator. As a natural extension, we replace the Poisson point process with a negative binomial point process having parameter $r>0$ and Lévy density $\rho$, thereby defining a new class $\mathrm{PK}^{(r)}(\rho)$ of distributions on the infinite simplex. The new class contains the two-parameter generalisation $\mathrm{PD}(\alpha, \theta)$ of [13] when $\theta>0$. It also contains a class of distributions derived from the trimmed stable subordinator. We derive properties of the new distributions, with particular reference to the two most well-known $\mathrm{PK}$ distributions: the Poisson–Dirichlet distribution $\mathrm{PK}(\rho_\theta)$ generated by a Gamma process with Lévy density $\rho_\theta(x) = \theta e^{-x}/x$, $x>0$, $\theta > 0$, and the random discrete distribution, $\mathrm{PD}(\alpha,0)$, derived from an $\alpha$-stable subordinator.
Keywords: Poisson–Kingman distribution, Poisson–Dirichlet distribution, stick-breaking and size-biased constructions, trimmed $\alpha$-stable subordinator, mixing distribution.
Funding agency Grant number
Australian Research Council DP1092502
Research partially supported by ARC Grant DP1092502
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yuguang F. Ipsen, Ross A. Maller, “Negative binomial construction of random discrete distributions on the infinite simplex”, Theory Stoch. Process., 22(38):2 (2017), 34–46
Citation in format AMSBIB
\Bibitem{IpsMal17}
\by Yuguang~F.~Ipsen, Ross~A.~Maller
\paper Negative binomial construction of random discrete distributions on the infinite simplex
\jour Theory Stoch. Process.
\yr 2017
\vol 22(38)
\issue 2
\pages 34--46
\mathnet{http://mi.mathnet.ru/thsp178}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3843523}
\zmath{https://zbmath.org/?q=an:06987423}
Linking options:
  • https://www.mathnet.ru/eng/thsp178
  • https://www.mathnet.ru/eng/thsp/v22/i2/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025