Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2007, Volume 13(29), Issue 1, Pages 86–97 (Mi thsp187)  

Consistency of $M$-estimates in general nonlinear regression models

Alexander V. Ivanov, Igor V. Orlovsky

National technical university of Ukraine, ”KPI”. Peremogi avenue 37, Kiev
References:
Abstract: Nonlinear regression model with continuous time and weak dependent or long-range dependent stationary noise is considered. Strong consistency sufficient conditions of $M$-estimates of regression parameters are obtained.
Keywords: Consistency, $M$-estimates, nonlinear regression model.
Bibliographic databases:
Document Type: Article
MSC: Primary 62J02; Secondary 62J99
Language: English
Citation: Alexander V. Ivanov, Igor V. Orlovsky, “Consistency of $M$-estimates in general nonlinear regression models”, Theory Stoch. Process., 13(29):1 (2007), 86–97
Citation in format AMSBIB
\Bibitem{IvaOrl07}
\by Alexander~V.~Ivanov, Igor~V.~Orlovsky
\paper Consistency of $M$-estimates in general
nonlinear regression models
\jour Theory Stoch. Process.
\yr 2007
\vol 13(29)
\issue 1
\pages 86--97
\mathnet{http://mi.mathnet.ru/thsp187}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2343813}
\zmath{https://zbmath.org/?q=an:1153.62052}
Linking options:
  • https://www.mathnet.ru/eng/thsp187
  • https://www.mathnet.ru/eng/thsp/v13/i1/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025