Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2007, Volume 13(29), Issue 2, Pages 194–204 (Mi thsp197)  

Some properties of weight functions in Tauberian theorems. II

Andriy Olenko

Department of Probability Theory and Mathematical Statistics, Mathematical Faculty, Kyiv University, Volodymyrska 64, Kyiv, 01033, Ukraine
References:
Abstract: New representations for weight functions in Tauberian theorems are derived. The representations are given by recurrent formulae. Obtained results are used to study properties of the weight functions.
Keywords: Tauberian theorems, random fields, weight functions, asymptotics.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Andriy Olenko, “Some properties of weight functions in Tauberian theorems. II”, Theory Stoch. Process., 13(29):2 (2007), 194–204
Citation in format AMSBIB
\Bibitem{Ole07}
\by Andriy~Olenko
\paper Some properties of weight functions
in Tauberian theorems. II
\jour Theory Stoch. Process.
\yr 2007
\vol 13(29)
\issue 2
\pages 194--204
\mathnet{http://mi.mathnet.ru/thsp197}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2343823}
\zmath{https://zbmath.org/?q=an:1142.60351}
Linking options:
  • https://www.mathnet.ru/eng/thsp197
  • https://www.mathnet.ru/eng/thsp/v13/i2/p194
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :61
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026