Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2007, Volume 13(29), Issue 3, Pages 29–37 (Mi thsp226)  

Conditioning of gaussian functionals and orthogonal expansion

Andrey A. Dorogovtsev

Institute of Mathematics, National Academy of Sciences of Ukraine, 3, Tereshchenkivs'ka Str., Kyiv 01601, Ukraine
References:
Abstract: In the article, we consider terms of the Gaussian chaotic expansion under conditioning with respect to some sigma-field and discuss the possibility to organize the orthogonal expansion from them.
Keywords: Gaussian white noise, Ito–Wiener expansion, conditional expectation, polynomially nondegenerate measure.
Bibliographic databases:
Document Type: Article
MSC: 60H05, 60H40, 60B11
Language: English
Citation: Andrey A. Dorogovtsev, “Conditioning of gaussian functionals and orthogonal expansion”, Theory Stoch. Process., 13(29):3 (2007), 29–37
Citation in format AMSBIB
\Bibitem{Dor07}
\by Andrey~A.~Dorogovtsev
\paper Conditioning of gaussian functionals
and orthogonal expansion
\jour Theory Stoch. Process.
\yr 2007
\vol 13(29)
\issue 3
\pages 29--37
\mathnet{http://mi.mathnet.ru/thsp226}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2396062}
\zmath{https://zbmath.org/?q=an:1199.60193}
Linking options:
  • https://www.mathnet.ru/eng/thsp226
  • https://www.mathnet.ru/eng/thsp/v13/i3/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025