Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2012, Volume 18(34), Issue 2, Pages 15–23 (Mi thsp26)  

The unified form of Pollaczek–Khinchine formula for Lévy processes with matrix-exponential negative jumps

D. Gusaka, Ie. Karnaukhb

a Institute of Mathematics of the NAS of Ukraine, 3, Tereshchenkivs'ka Str., Kyiv 01601, Ukraine
b O. Honchar Dnipropetrovsk National University, 72, Gagarina Pr., Dnipropetrovsk 49010, Ukraine
References:
Abstract: For Lévy processes with matrix-exponential negative jumps, the unified form of the Pollaczek-Khinchine formula is established.
Keywords: Pollaczek–Khinchine formula; Lévy processes; matrix-exponential negative jumps.
Bibliographic databases:
Document Type: Article
MSC: Primary 60G51; Secondary 60K10
Language: English
Citation: D. Gusak, Ie. Karnaukh, “The unified form of Pollaczek–Khinchine formula for Lévy processes with matrix-exponential negative jumps”, Theory Stoch. Process., 18(34):2 (2012), 15–23
Citation in format AMSBIB
\Bibitem{GusKar12}
\by D. Gusak, Ie. Karnaukh
\paper The unified form of Pollaczek--Khinchine formula for L\'{e}vy processes with matrix-exponential negative jumps
\jour Theory Stoch. Process.
\yr 2012
\vol 18(34)
\issue 2
\pages 15--23
\mathnet{http://mi.mathnet.ru/thsp26}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3124771}
\zmath{https://zbmath.org/?q=an:1289.60089}
Linking options:
  • https://www.mathnet.ru/eng/thsp26
  • https://www.mathnet.ru/eng/thsp/v18/i2/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :63
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026