Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2019, Volume 24(40), Issue 2, Pages 32–60 (Mi thsp305)  

First order convergence of weak Wong–Zakai approximations of Lévy-driven Marcus SDEs

Tetyana Kosenkovaa, Alexei Kulikb, Ilya Pavlyukevichc

a Institute of Mathematics, University of Potsdam, Campus Golm, Karl--Liebknecht--Strasse 24--25, 14476 Potsdam, Germany
b Wroclaw University of Science and Technology Faculty of Pure and Applied Mathematics, Wybrzeże Wyspiańskiego Str. 27, 50-370 Wroclaw, Poland
c Institute of Mathematics, Friedrich Schiller University Jena, Ernst–Abbe–Platz 2, 07743 Jena, Germany
References:
Abstract: For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.
Keywords: Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence, Euler scheme.
Document Type: Article
MSC: 65C30, 60H10, 60G51 , 60H35
Language: English
Citation: Tetyana Kosenkova, Alexei Kulik, Ilya Pavlyukevich, “First order convergence of weak Wong–Zakai approximations of Lévy-driven Marcus SDEs”, Theory Stoch. Process., 24(40):2 (2019), 32–60
Citation in format AMSBIB
\Bibitem{KosKulPav19}
\by Tetyana~Kosenkova, Alexei~Kulik, Ilya~Pavlyukevich
\paper First order convergence of weak Wong--Zakai approximations of L\'evy-driven Marcus SDEs
\jour Theory Stoch. Process.
\yr 2019
\vol 24(40)
\issue 2
\pages 32--60
\mathnet{http://mi.mathnet.ru/thsp305}
Linking options:
  • https://www.mathnet.ru/eng/thsp305
  • https://www.mathnet.ru/eng/thsp/v24/i2/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025