Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2010, Volume 16(32), Issue 1, Pages 49–56 (Mi thsp60)  

This article is cited in 1 scientific paper (total in 1 paper)

On some generalizations of the Pollachek–Khinchine formula

D. V. Gusak (Husak)

Institute of Mathematics, Ukr. Nat. Acad. Sci. Kyiv
Full-text PDF (171 kB) Citations (1)
References:
Abstract: For the skip-free Poisson process $\xi(t) \ (t\geq0, \xi(0)=0),$
$$ \xi(t)=at+S(t), \ a<0, \ S(t)=\sum_{k\leq\nu(t)}\xi_k, \ \xi_k>0, \xi(0)=0, $$
where $\nu(t)$ is a simple Poisson process with intensity $\lambda>0,$ the moment generating function (m.g.f.) of $\xi^+=\sup_{0\leq t<\infty}\xi(t)$ is defined by the well-known Pollachek–Khinchine formula under the condition $m=E\xi (1)<0$ (see [1-3]).
For a homogeneous process $\xi(t)$ with bounded variation, we establish prelimit and limit generalizations of this formula, which define the m.g.f. of
$$ \xi^+(\theta_s)=\sup_{0\leq t\leq\theta_s}\xi (t), \ \xi^+=\lim_{s\to0}\xi^+(\theta_s) \left(P\{\theta_s>t\}=e^{-st}, \ s>0\right). $$
These generalizations are essentially based on the condition $P\{\tau ^+(0)= \gamma ^+(0)=0\}=0,$ where $(\tau ^+(0),\gamma ^+(0))$ is the initial ladder point of $\xi (t)\ (t\geq0, \xi(0)=0)$.
Some another relations for the m.g.f. of $\xi^+(\theta_s)$ and $\xi^+$ are established for the general lower semicontinuous process $\xi(t)$ on the base of results in [3-5].
Keywords: Semicontinuous processes, Pollachek–Khinchine formula.
Bibliographic databases:
Document Type: Article
MSC: Primary 60G50; Secondary 60K10
Language: English
Citation: D. V. Gusak (Husak), “On some generalizations of the Pollachek–Khinchine formula”, Theory Stoch. Process., 16(32):1 (2010), 49–56
Citation in format AMSBIB
\Bibitem{Gus10}
\by D.~V.~Gusak (Husak)
\paper On some generalizations of the Pollachek--Khinchine formula
\jour Theory Stoch. Process.
\yr 2010
\vol 16(32)
\issue 1
\pages 49--56
\mathnet{http://mi.mathnet.ru/thsp60}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2779840}
\zmath{https://zbmath.org/?q=an:1224.60095}
Linking options:
  • https://www.mathnet.ru/eng/thsp60
  • https://www.mathnet.ru/eng/thsp/v16/i1/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025