|
Deviation inequallities for exponential jump-diffusion processes
B. Laquerrièrea, N. Privaultb a Laboratoire de Mathématiques, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex, France
b Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
Abstract:
We clarify the connection between diffusion processes and partial differential equations of the parabolic type. The emphasis is on degenerate parabolic equations. These equations are a generalization of the classical Kolmogorov equation of diffusion with inertia which may be treated as the Fokker-Planck-Kolmogorov equations for the respectively degenerate diffusion processes. The basic results relating to the fundamental solution and the correct solvability of the Cauchy problem are presented.
Keywords:
Deviation inequalities, exponential jump-diffusion processes, concentration inequalities, forward/backward stochastic calculus.
Citation:
B. Laquerrière, N. Privault, “Deviation inequallities for exponential jump-diffusion processes”, Theory Stoch. Process., 16(32):1 (2010), 67–72
Linking options:
https://www.mathnet.ru/eng/thsp62 https://www.mathnet.ru/eng/thsp/v16/i1/p67
|
|