Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2010, Volume 16(32), Issue 1, Pages 130–138 (Mi thsp68)  

Strong invariance principle for a superposition of random processes

N. M. Zinchenko

Department of Probability Theory, Mathematical Statistics and Actuarial Mathematics, National Taras Shevchenko University of Kyiv, 64, Volodymyrs'ka, Kyiv, Ukraine
References:
Abstract: The strong invariance principle (SIP) is proved for a superposition of random processes $S(N(t))$ under rather general assumptions on $S(t)$ and $N(t)$. As a consequence, a number of SIP-type results are obtained for random sums and used to investigate their rate of growth and fluctuation of increments.
Keywords: Invariance principle, randomly stopped process, Lévy process, renewal process, domain of attraction, stable process, stationary sequences, risk process, rate of growth.
Bibliographic databases:
Document Type: Article
MSC: Primary 60F17; Secondary 60F15,60G52,60G50
Language: English
Citation: N. M. Zinchenko, “Strong invariance principle for a superposition of random processes”, Theory Stoch. Process., 16(32):1 (2010), 130–138
Citation in format AMSBIB
\Bibitem{Zin10}
\by N.~M.~Zinchenko
\paper Strong invariance principle for a superposition of random processes
\jour Theory Stoch. Process.
\yr 2010
\vol 16(32)
\issue 1
\pages 130--138
\mathnet{http://mi.mathnet.ru/thsp68}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2779832}
\zmath{https://zbmath.org/?q=an:1224.60062}
Linking options:
  • https://www.mathnet.ru/eng/thsp68
  • https://www.mathnet.ru/eng/thsp/v16/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025