Theory of Stochastic Processes
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theory Stoch. Process.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theory of Stochastic Processes, 2010, Volume 16(32), Issue 2, Pages 69–76 (Mi thsp76)  

On a diffusion process on a half-line with Feller–Wentzel boundary condition that corresponds to reflection and jumps

P. P. Kononchuk, B. I. Kopytko

1, Universytetska Str., Lviv 79000, Ukraine, Ivan Franko Lviv National University, Higher Mathematics Dept.
References:
Abstract: An operator semigroup that describes a diffusion process on a half-line such that its behavior on a boundary is defined by the Feller–Wentzel boundary condition with the integral term is constructed using classical potential theory.
Keywords: Diffusion process, potential theory.
Bibliographic databases:
Document Type: Article
MSC: 60J60
Language: English
Citation: P. P. Kononchuk, B. I. Kopytko, “On a diffusion process on a half-line with Feller–Wentzel boundary condition that corresponds to reflection and jumps”, Theory Stoch. Process., 16(32):2 (2010), 69–76
Citation in format AMSBIB
\Bibitem{KonKop10}
\by P.~P.~Kononchuk, B.~I.~Kopytko
\paper On a diffusion process on a half-line with Feller--Wentzel boundary condition that corresponds to reflection and jumps
\jour Theory Stoch. Process.
\yr 2010
\vol 16(32)
\issue 2
\pages 69--76
\mathnet{http://mi.mathnet.ru/thsp76}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2777902}
\zmath{https://zbmath.org/?q=an:1249.60172}
Linking options:
  • https://www.mathnet.ru/eng/thsp76
  • https://www.mathnet.ru/eng/thsp/v16/i2/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theory of Stochastic Processes
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :82
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026