Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2016, Volume 24, Number 1, Pages 34–37 (Mi timb256)  

This article is cited in 1 scientific paper (total in 1 paper)

On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups

V. N. Kniahina

Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus
Full-text PDF (244 kB) Citations (1)
References:
Abstract: A Schmidt group is a finite nonnilpotent group in which every proper subgroup is nilpotent. Fix a positive integer $n.$ Let $G$ be a solvable group. Suppose that each $n$-maximal subgroup of $G$ is permutable with every $p$-nilpotent Schmidt subgroup. We prove that if $n\in\{1,2,3\},$ then $G/F(G)$ is $p$-closed, where $F(G)$ is the Fitting subgroup of $G$.
Received: 21.04.2016
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Kniahina, “On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups”, Tr. Inst. Mat., 24:1 (2016), 34–37
Citation in format AMSBIB
\Bibitem{Kny16}
\by V.~N.~Kniahina
\paper On permutability of $n$-maximal subgroups with $p$-nilpotent Schmidt subgroups
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 1
\pages 34--37
\mathnet{http://mi.mathnet.ru/timb256}
Linking options:
  • https://www.mathnet.ru/eng/timb256
  • https://www.mathnet.ru/eng/timb/v24/i1/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :109
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025