Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2019, Volume 27, Number 1-2, Pages 53–59 (Mi timb303)  

Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs

V. V. Lepin

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
References:
Abstract: Let $\mathcal{H}$ be a fixed set of connected graphs. A $\mathcal{H}$-packing of a given graph $G$ is a pairwise vertex-disjoint set of subgraphs of $G,$ each isomorphic to a member of $\mathcal{H}.$ An independent $\mathcal{H}$-packing of a given graph $G$ is an $\mathcal{H}$-packing of $G$ in which no two subgraphs of the packing are joined by an edge of $G.$ Given a graph $G$ with a vertex weight function $\omega_V:~V(G)\to\mathbb{N}$ and an edge weight function and $\omega_E:~E(G)\to\mathbb{N},$ weight of an independent $\{K_1,K_2\}$-packing $S$ in $G$ is $\sum_{v\in U}\omega_V(v)+\sum_{e\in F}\omega_E(e),$ where $U=\bigcup_{H\in\mathcal{S},~H\cong K_1}V(H),$ and $F=\bigcup_{H\in\mathcal{S}}E(H).$ The problem of finding an independent $\{K_1,K_2\}$-packing of maximum weight is considered. We present a linear-time algorithm solving this problem for tree-cographs when the decomposition tree is a part of the input.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф18РА–014
Received: 30.10.2018
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. V. Lepin, “Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs”, Tr. Inst. Mat., 27:1-2 (2019), 53–59
Citation in format AMSBIB
\Bibitem{Lep19}
\by V.~V.~Lepin
\paper Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs
\jour Tr. Inst. Mat.
\yr 2019
\vol 27
\issue 1-2
\pages 53--59
\mathnet{http://mi.mathnet.ru/timb303}
Linking options:
  • https://www.mathnet.ru/eng/timb303
  • https://www.mathnet.ru/eng/timb/v27/i1/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :60
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025