Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2023, Volume 31, Number 1, Pages 6–13 (Mi timb356)  

This article is cited in 1 scientific paper (total in 1 paper)

On the functor properties of the $\Omega$-saturation of a topological $T_1$-space

A. S. Biadrytski

Belarusian State University, Minsk
Full-text PDF (494 kB) Citations (1)
References:
Abstract: For a topological $T_1$-space we consider a $\Omega$-saturation, which is canonically embedded in the Wallman extension $\omega X$. In a certain sense, this saturation is maximal with respect to inclusion among all saturations of this type. A class of maps $X\stackrel{f}{\longrightarrow}Y$ which admit a continuous extension $s_\Delta X\stackrel{\tilde f}{\longrightarrow}s_\Delta Y$, where $s_\Delta X$ and $s_\Delta Y$ are the $\Omega$-saturations (mentioned above) of the spaces $X$ and $Y$ respectively is found. It is shown that these maps, together with the class of topological $T_1$-spaces, form a category, and the construction of the $\Omega$-saturation considered in the paper defines a covariant functor from the indicated category into the category TOP of topological spaces and continuous maps.
Received: 08.11.2022
Document Type: Article
UDC: 515.12
Language: Russian
Citation: A. S. Biadrytski, “On the functor properties of the $\Omega$-saturation of a topological $T_1$-space”, Tr. Inst. Mat., 31:1 (2023), 6–13
Citation in format AMSBIB
\Bibitem{Bia23}
\by A.~S.~Biadrytski
\paper On the functor properties of the $\Omega$-saturation of a topological $T_1$-space
\jour Tr. Inst. Mat.
\yr 2023
\vol 31
\issue 1
\pages 6--13
\mathnet{http://mi.mathnet.ru/timb356}
Linking options:
  • https://www.mathnet.ru/eng/timb356
  • https://www.mathnet.ru/eng/timb/v31/i1/p6
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :57
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025