Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 3, Pages 76–85 (Mi timm1086)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint

A. R. Danilinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Yeltsin Ural Federal University
Full-text PDF (176 kB) Citations (3)
References:
Abstract: A control problem for solutions of a boundary value problem for a second-order ordinary differential equation with a small parameter at the second derivative is considered on a closed interval. The control is scalar and subject to integral constraints. We construct a complete asymptotic expansion in powers of the small parameter in the Erdelyi sense.
Keywords: optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.
Received: 16.04.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2015, Volume 291, Issue 1, Pages S66–S76
DOI: https://doi.org/10.1134/S0081543815090059
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 76–85; Proc. Steklov Inst. Math., 291, suppl. 1 (2015), S66–S76
Citation in format AMSBIB
\Bibitem{Dan14}
\by A.~R.~Danilin
\paper Asymptotic expansion of a~solution to a~singular perturbation optimal control problem on an interval with integral constraint
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 76--85
\mathnet{http://mi.mathnet.ru/timm1086}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3364418}
\elib{https://elibrary.ru/item.asp?id=23503113}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 291
\issue , suppl. 1
\pages S66--S76
\crossref{https://doi.org/10.1134/S0081543815090059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949514431}
Linking options:
  • https://www.mathnet.ru/eng/timm1086
  • https://www.mathnet.ru/eng/timm/v20/i3/p76
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025