Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 137–152 (Mi timm1150)  

Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities

A. A. Kovalevsky

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider nonlinear elliptic second-order variational inequalities with degenerate (with respect to the spatial variable) and anisotropic coefficients and $L^1$-data. We study the cases where the set of constraints belongs to a certain anisotropic weighted Sobolev space and a larger function class. In the first case, some new properties of $T$-solutions and shift $T$-solutions of the investigated variational inequalities are established. Moreover, the notion of $W^{1,1}$-regular $T$-solution is introduced, and a theorem of existence and uniqueness of such a solution is proved. In the second case, we introduce the notion of $\mathcal T$-solution of the variational inequalities under consideration and establish conditions of existence and uniqueness of such a solution.
Keywords: nonlinear elliptic variational inequalities; anisotropy; degeneration; $L^1$-data; $T$-solution; $\mathcal T$-solution.
Received: 18.12.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2016, Volume 292, Issue 1, Pages S156–S172
DOI: https://doi.org/10.1134/S0081543816020139
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. A. Kovalevsky, “Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 137–152; Proc. Steklov Inst. Math., 292, suppl. 1 (2016), S156–S172
Citation in format AMSBIB
\Bibitem{Kov15}
\by A.~A.~Kovalevsky
\paper Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 137--152
\mathnet{http://mi.mathnet.ru/timm1150}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3379611}
\elib{https://elibrary.ru/item.asp?id=23137980}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 292
\issue , suppl. 1
\pages S156--S172
\crossref{https://doi.org/10.1134/S0081543816020139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971507159}
Linking options:
  • https://www.mathnet.ru/eng/timm1150
  • https://www.mathnet.ru/eng/timm/v21/i1/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :84
    References:69
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025