Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 2, Pages 220–229
DOI: https://doi.org/10.21538/0134-4889-2017-23-2-220-229
(Mi timm1424)
 

A bound for the remainder term in the asymptotic expansion of the elliptic sine containing the first three terms

A. A. Soloviev

Chelyabinsk State University, Faculty of Mathematics
References:
Abstract: We propose a simple method for finding an asymptotic expansion of the elliptic sine $z=$sn$(u;k)$ in powers of $k^2-1$. In the literature only the first two terms of the expansion have been written. The proposed method makes it possible to find subsequent terms of the expansion. The disadvantage of this method is its computational intensity. We prove that the remainder term $R(u,k)$ in the asymptotic expansion containing the first three terms of the expansion satisfies the limit equality
$$\lim_{z\to 1} \lim_{k\to 1}R(u,k)\frac{(1-z)^2}{(1-k^2)^3}\not =0\,.$$
The main result of this paper in an estimate for the remainder term. We prove that
$$\vert R(u,k)\vert\leqslant {\rm const}\frac{1}{\cosh^2u} \frac{(1-k^2)^3}{(1-z)^3}.$$
Keywords: elliptic sine, asymptotic expansions, hyperbolic functions.
Received: 06.12.2016
Bibliographic databases:
Document Type: Article
UDC: 517.583
MSC: 33E05
Language: Russian
Citation: A. A. Soloviev, “A bound for the remainder term in the asymptotic expansion of the elliptic sine containing the first three terms”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 220–229
Citation in format AMSBIB
\Bibitem{Sol17}
\by A.~A.~Soloviev
\paper A bound for the remainder term in the asymptotic expansion of the elliptic sine containing the first three terms
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 2
\pages 220--229
\mathnet{http://mi.mathnet.ru/timm1424}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-2-220-229}
\elib{https://elibrary.ru/item.asp?id=29295264}
Linking options:
  • https://www.mathnet.ru/eng/timm1424
  • https://www.mathnet.ru/eng/timm/v23/i2/p220
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025