Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 106–120
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-106-120
(Mi timm1500)
 

This article is cited in 6 scientific papers (total in 6 papers)

Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model

A. I. Korotkiiab, A. L. Litvinenkob

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (249 kB) Citations (6)
References:
Abstract: We study the solvability of an inhomogeneous mixed boundary value problem for a stationary reaction-convection-diffusion model. Such models are often used in science and engineering for the description and analysis of various processes of heat and mass transfer. We focus on the issues of solvability of the boundary value problem in various functional spaces and on the stability of the solution and its continuous dependence on the input data in natural metrics. The peculiarity of the problem consists in the inhomogeneity and irregularity of the mixed boundary data. These boundary data, in general, cannot be continued inside the domain so that the continuation is sufficiently smooth and can be used in the known way to transform the problem to homogeneous boundary data. To prove the solvability of the problem, we use the Lax-Milgram theorem. Estimates for the norms of the solution follow from the same theorem. The properties of the solution of the direct problem found in this study will be used in what follows to solve inverse problems.
Keywords: direct problem, mixed boundary condition, weak solution, generalized solution, strong solution, stability, completely continuous operator.
Received: 25.08.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2019, Volume 304, Issue 1, Pages S97–S111
DOI: https://doi.org/10.1134/S0081543819020111
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. I. Korotkii, A. L. Litvinenko, “Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 106–120; Proc. Steklov Inst. Math., 304, suppl. 1 (2019), S97–S111
Citation in format AMSBIB
\Bibitem{KorLit18}
\by A.~I.~Korotkii, A.~L.~Litvinenko
\paper Solvability of a mixed boundary value problem for a stationary reaction-convection-diffusion model
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 106--120
\mathnet{http://mi.mathnet.ru/timm1500}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-106-120}
\elib{https://elibrary.ru/item.asp?id=32604048}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\issue , suppl. 1
\pages S97--S111
\crossref{https://doi.org/10.1134/S0081543819020111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067024035}
Linking options:
  • https://www.mathnet.ru/eng/timm1500
  • https://www.mathnet.ru/eng/timm/v24/i1/p106
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025