Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 1, Pages 11–34
DOI: https://doi.org/10.21538/0134-4889-2019-25-1-11-34
(Mi timm1597)
 

This article is cited in 12 scientific papers (total in 12 papers)

Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System

M. I. Gomoyunovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A two-person zero-sum differential game is considered. The motion of the dynamic system is described by an ordinary differential equation with a Caputo fractional derivative of order $\alpha\in(0,1)$. The quality index consists of two terms: the first depends on the motion of the system realized by the terminal time and the second includes an integral estimate of the realizations of the players' controls. The positional approach is applied to formalize the game in the “strategy–counterstrategy” and “counterstrategy–strategy” classes as well as in the “strategy–strategy” classes under the additional saddle point condition in the small game. In each case, the existence of the value and of the saddle point of the game is proved. The proofs are based on an appropriate modification of the method of extremal shift to accompanying points, which takes into account the specific properties of fractional-order systems.
Keywords: fractional-order differential equation, Caputo derivative, differential game, game value, positional strategy, counterstrategy, extremal shift.
Received: 22.11.2018
Revised: 20.01.2019
Accepted: 21.01.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2020, Volume 308, Issue 1, Pages S83–S105
DOI: https://doi.org/10.1134/S0081543820020078
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N79, 34K37
Language: Russian
Citation: M. I. Gomoyunov, “Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 11–34; Proc. Steklov Inst. Math., 308, suppl. 1 (2020), S83–S105
Citation in format AMSBIB
\Bibitem{Gom19}
\by M.~I.~Gomoyunov
\paper Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 1
\pages 11--34
\mathnet{http://mi.mathnet.ru/timm1597}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-1-11-34}
\elib{https://elibrary.ru/item.asp?id=37051090}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 308
\issue , suppl. 1
\pages S83--S105
\crossref{https://doi.org/10.1134/S0081543820020078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470956900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078269582}
Linking options:
  • https://www.mathnet.ru/eng/timm1597
  • https://www.mathnet.ru/eng/timm/v25/i1/p11
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025