Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 1, Pages 120–135
DOI: https://doi.org/10.21538/0134-4889-2019-25-1-120-135
(Mi timm1605)
 

This article is cited in 1 scientific paper (total in 1 paper)

Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations

L. S. Maergoiz

Krasnoyarsk Scientific Center of SB RAS
Full-text PDF (315 kB) Citations (1)
References:
Abstract: The paper discusses several methods of analytic continuation of a multivalued function of one variable given on a part of its Riemann surface in the form of a Puiseux series generated by the power function $z=w^{1/\rho}$, where $\rho>1/2$ and $\rho\neq 1$. We present a many-sheeted variant of G. Pólya's theorem describing the relation between the indicator and conjugate diagrams for entire functions of exponential type. The description is based on V. Bernstein's construction for the many-sheeted indicator diagram of an entire function of order $\rho\neq 1$ and normal type. The summation domain of the “proper” Puiseux series (the many-sheeted “Borel polygon”) is found with the use of a generalization of the Borel method. This result seems to be new even in the case of a power series. The theory is applied to describe the domains of analytic continuation of Puiseux series representing the inverses of rational functions. As a consequence, a new approach to the solution of algebraic equations is found.
Keywords: entire function, order, indicator, Puiseux series, multivalued function, many-sheeted diagram, concave diagram, indicator diagram, conjugate diagram, Riemann surface, analytic continuation, solution of algebraic equations.
Received: 14.11.2018
Revised: 17.01.2019
Accepted: 21.01.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2020, Volume 308, Issue 1, Pages S135–S151
DOI: https://doi.org/10.1134/S008154382002011X
Bibliographic databases:
Document Type: Article
UDC: 517.547+517.546+517.535+517.953
Language: Russian
Citation: L. S. Maergoiz, “Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 120–135; Proc. Steklov Inst. Math., 308, suppl. 1 (2020), S135–S151
Citation in format AMSBIB
\Bibitem{Mae19}
\by L.~S.~Maergoiz
\paper Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 1
\pages 120--135
\mathnet{http://mi.mathnet.ru/timm1605}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-1-120-135}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3935645}
\elib{https://elibrary.ru/item.asp?id=37051098}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 308
\issue , suppl. 1
\pages S135--S151
\crossref{https://doi.org/10.1134/S008154382002011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470956900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085393125}
Linking options:
  • https://www.mathnet.ru/eng/timm1605
  • https://www.mathnet.ru/eng/timm/v25/i1/p120
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025