Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 116–124
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-116-124
(Mi timm1628)
 

Self-intersections in parametrized self-similar sets under translations and extensions of copies

K. G. Kamalutdinov

Novosibirsk State University
References:
Abstract: We study the problem of pairwise intersections $F_i(K_t)\cap F_j^t (K_t)$ of different copies of a self-similar set $K_t$ generated by a system $\mathcal F_t=\{F_1,\dots,F_m\}$ of contracting similarities in $\mathbb R^n$, where one mapping $F_j^t$ depends on a real or vector parameter $t$. Two cases are considered: the parameter $t\in \mathbb R^n$ specifies a translation of a mapping $F_j^t(x) = G(x)+t$, and the parameter $t\in (a,b)$ is the similarity coefficient of a mapping $F_j^t(x)=tG(x)+h$, where $0<a<b<1$ and $G$ is an isometry of $\mathbb R^n$. We impose some constraints on the similarity coefficients of mappings of the system $\mathcal F_t$ and require that the similarity dimension of the system does not exceed some number $s$. For such systems it is proved that the Hausdorff dimension of the set of parameters $t$ for which the intersection $F_i(K_t)\cap F_j^t(K_t)$ is nonempty does not exceed $2s$. The obtained results are applied to the problem of checking the strong separation condition for a system $\mathcal F_\tau=\{F_1^\tau,\dots, F_m^\tau\}$ of contraction similarities depending on a parameter vector $\tau=(t_1,\dots,t_m)$. Two cases are considered: $\tau$ is a vector of translations of mappings $F_i^\tau(x)=G_i(x)+t_i$, $t_i\in \mathbb R^n$, and $\tau$ is a vector of similarity coefficients of mappings $F_i^\tau(x)=t_i G_i(x)+h_i$, $t_i\in(a,b)$, where $0<a<b<1$ and all $G_i$ are isometries in $\mathbb R^n$. In both cases we find sufficient conditions for the system $\mathcal F_\tau$ to satisfy the strong separation condition for almost all values of $\tau$. We also consider the easier problem of the intersection $A\cap f_t(B)$ for a pair of compact sets $A$ and $B$ in the space $\mathbb R^n$. Two cases are considered: $f_t(B)=B+t$ for $t\in\mathbb R^n$, and $f_t(B)=tB$ for $t\in\mathbb R$, where the closure of $B$ does not contain the origin. In both cases it is proved that the Hausdorff dimension of the set of parameters $t$ for which the intersection $A\cap f_t(B)$ is nonempty does not exceed $\dim_H (A\times B)$. Consequently, when the dimension of the product $A\times B$ is small enough, the empty intersection $A\cap f_t(B)$ is guaranteed for almost all values of $t$ in both cases.
Keywords: self-similar fractal, general position, strong separation condition, Hausdorff dimension.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00569
18-501-51021
This work was supported by the Russian Foundation for Basic Research (projects no. 19-01-00569, 18-501-51021).
Received: 22.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.114
MSC: 28A78, 28A80
Language: Russian
Citation: K. G. Kamalutdinov, “Self-intersections in parametrized self-similar sets under translations and extensions of copies”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 116–124
Citation in format AMSBIB
\Bibitem{Kam19}
\by K.~G.~Kamalutdinov
\paper Self-intersections in parametrized self-similar sets under translations and extensions of copies
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 116--124
\mathnet{http://mi.mathnet.ru/timm1628}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-116-124}
\elib{https://elibrary.ru/item.asp?id=38071606}
Linking options:
  • https://www.mathnet.ru/eng/timm1628
  • https://www.mathnet.ru/eng/timm/v25/i2/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025