Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 132–146
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-132-146
(Mi timm1728)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set

A. R. Danilina, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (257 kB) Citations (1)
References:
Abstract: The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set\textup:
$$ \left\{
\begin{array}{ll} \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, & x\in \mathbb{R}^{n},\ y\in \mathbb{R}^{m},\ u\in\mathbb{R}^{r},\\[1ex] \varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u,& \|u\|\le 1,\\[1ex] x(0)=x_0\not=0,\quad y(0)=y_0, & 0<\varepsilon\ll 1,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min. \end{array}
\right. $$
The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved. The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained. An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers of the small parameter $\varepsilon$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.А03.21.0006
O.O.Kovrizhnykh’s research is supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 15.01.2020
Revised: 27.02.2020
Accepted: 02.03.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2021, Volume 313, Issue 1, Pages S40–S53
DOI: https://doi.org/10.1134/S0081543821030068
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 132–146; Proc. Steklov Inst. Math., 313, suppl. 1 (2021), S40–S53
Citation in format AMSBIB
\Bibitem{DanKov20}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 132--146
\mathnet{http://mi.mathnet.ru/timm1728}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-132-146}
\elib{https://elibrary.ru/item.asp?id=42950654}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\issue , suppl. 1
\pages S40--S53
\crossref{https://doi.org/10.1134/S0081543821030068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000544885600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090541607}
Linking options:
  • https://www.mathnet.ru/eng/timm1728
  • https://www.mathnet.ru/eng/timm/v26/i2/p132
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025