Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 147–160
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-147-160
(Mi timm1729)
 

On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs

M. R. Zinov'evaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. A graph with the following adjacency relation is defined on $\pi(G)$: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the { Gruenberg–Kegel graph} or the {prime graph} of $G$ and is denoted by $GK(G)$. In A.V. Vasil'ev's Question 16.26 from {The Kourovka Notebook}, it is required to describe all pairs of nonisomorphic finite simple nonabelian groups with identical Gruenberg–Kegel graphs. M. Hagie (2003) and M.A. Zvezdina (2013) gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author (2014) solved this question for pairs of finite simple groups of Lie type over fields of the same characteristic. In the present paper, we prove the following theorem.
Theorem. Let $G$ be a finite simple group of exceptional Lie type over a field with $q$ elements, and let $G_1$ be a finite simple group of Lie type over a field with $q$ elements nonisomorphic to $G$, where $q$ and $q_1$ are coprime. If $GK(G)=GK(G_1)$, then one of the following holds: (1) $\{G,G_1\}=\{G_2(3),A_1(13)\}$; (2) $\{G,G_1\}=\{{^2}F_4(2)',A_3(3)\}$; (3) $\{G,G_1\}=\{{^3}D_4(q),A_2(q_1)\}$, where $(q_1-1)_3\neq 3$ and $q_1+1\neq 2^{k_1}$; (4) $\{G,G_1\}=\{{^3}D_4(q),A_4^{\pm}(q_1)\}$, where $(q_1\mp1)_5\neq 5$; (5) $\{G,G_1\}=\{G_2(q),G_2(q_1)\}$, where $q$ and $q_1$ are not powers of 3; (6) $\{G,G_1\}$ is one of the pairs $\{F_4(q),F_4(q_1)\}$, $\{{^3}D_4(q),{^3}D_4(q_1)\}$, and $\{E_8(q),E_8(q_1)\}$. The existence of pairs of groups in statements (3)–(6) is unknown.
Keywords: finite simple exceptional group of Lie type, spectrum, prime graph.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00456
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00456) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 03.04.2020
Revised: 11.05.2020
Accepted: 25.05.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2021, Volume 313, Issue 1, Pages S228–S240
DOI: https://doi.org/10.1134/S0081543821030238
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. R. Zinov'eva, “On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 147–160; Proc. Steklov Inst. Math., 313, suppl. 1 (2021), S228–S240
Citation in format AMSBIB
\Bibitem{Zin20}
\by M.~R.~Zinov'eva
\paper On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 147--160
\mathnet{http://mi.mathnet.ru/timm1729}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-147-160}
\elib{https://elibrary.ru/item.asp?id=42950655}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\issue , suppl. 1
\pages S228--S240
\crossref{https://doi.org/10.1134/S0081543821030238}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000544885600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090525503}
Linking options:
  • https://www.mathnet.ru/eng/timm1729
  • https://www.mathnet.ru/eng/timm/v26/i2/p147
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025