Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 1, Pages 48–61
DOI: https://doi.org/10.21538/0134-4889-2021-27-1-48-61
(Mi timm1789)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set

A. R. Danilina, O. O. Kovrizhnykhab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (241 kB) Citations (3)
References:
Abstract: This paper is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set:
$$ \left\{
\begin{array}{llll} \phantom{\varepsilon}\dot{x}=y,\,& x,\,y\in \mathbb{R}^{2m},\quad u\in \mathbb{R}^{2m},\\[1ex] \varepsilon\dot{y}=Jy-Ju,&\,\|u\|\leqslant 1,\quad \varepsilon\ll 1,\\[1ex] x(0)=x^0,\quad y(0)=\varepsilon y^0,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{2m},\quad T_\varepsilon \longrightarrow \min,& \end{array}
\right. $$
where
$$ J=\left(
\begin{array}{rr} 0&\beta \cdot I\\ -\beta \cdot I&0\end{array}
\right), \quad \beta>0. $$
The eigenvalues of the matrix $J$ at the fast variables do not satisfy the standard requirement that the real part is negative. The solvability of the problem is proved. We also construct and justify a complete power asymptotic expansion in the sense of Erdelyi of the optimal time as the small parameter $\varepsilon$ at the derivatives in the equations of the system tends to zero over some set. It is shown that the form of the asymptotics depends essentially on the set over which the small parameter tends to zero.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
Received: 11.01.2021
Revised: 23.01.2021
Accepted: 01.02.2021
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 93C70, 49N05
Language: Russian
Citation: A. R. Danilin, O. O. Kovrizhnykh, “Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 1, 2021, 48–61
Citation in format AMSBIB
\Bibitem{DanKov21}
\by A.~R.~Danilin, O.~O.~Kovrizhnykh
\paper Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 1
\pages 48--61
\mathnet{http://mi.mathnet.ru/timm1789}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-1-48-61}
\elib{https://elibrary.ru/item.asp?id=44827392}
Linking options:
  • https://www.mathnet.ru/eng/timm1789
  • https://www.mathnet.ru/eng/timm/v27/i1/p48
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025