Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 2, Pages 79–98
DOI: https://doi.org/10.21538/0134-4889-2021-27-2-79-98
(Mi timm1816)
 

This article is cited in 2 scientific papers (total in 2 papers)

Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers

N. L. Grigorenkoa, E. N. Khailova, E. V. Grigorievab, A. D. Klimenkovaa

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b Texas Woman's University, Denton
Full-text PDF (361 kB) Citations (2)
References:
Abstract: The interaction of healthy and cancerous cell concentrations in diseases associated with blood cancer is described by a two-dimensional Lotka–Volterra competition model. A differential equation specifying the change in the concentration of a chemotherapeutic drug during treatment is added to the model. This equation includes a bounded control function determining the rate at which such a drug enters the patient's bloodstream. The effectiveness of the used treatment is described by a nonmonotone therapy function. The problem is to minimize the weighted difference between the concentrations of cancerous and healthy cells at the end of a given treatment period for the considered three-dimensional control system. Application of the Pontryagin maximum principle allows to analytically study the properties of the optimal control. We single out and investigate possible cases when such a control is a bang-bang function and also the cases when, along with the bang-bang sections, it can contain singular regimes of the first and second orders. The established analytical results are confirmed by numerical calculations performed for different values of parameters and initial conditions of the considered minimization problem.
Keywords: Lotka–Volterra competition model, nonmonotone therapy function, nonlinear control system, Pontryagin maximum principle, switching function, bang-bang control, singular regime, chattering.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics
The research of A.D. Klimenkova is supported by the Moscow Center for Fundamental and Applied Mathematics.
Received: 16.12.2020
Revised: 18.01.2021
Accepted: 01.02.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2022, Volume 317, Issue 1, Pages S71–S89
DOI: https://doi.org/10.1134/S0081543822030063
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
MSC: 49J15, 58E25, 92D25
Language: Russian
Citation: N. L. Grigorenko, E. N. Khailov, E. V. Grigorieva, A. D. Klimenkova, “Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 79–98; Proc. Steklov Inst. Math., 317, suppl. 1 (2022), S71–S89
Citation in format AMSBIB
\Bibitem{GriKhaGri21}
\by N.~L.~Grigorenko, E.~N.~Khailov, E.~V.~Grigorieva, A.~D.~Klimenkova
\paper Lotka--Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 79--98
\mathnet{http://mi.mathnet.ru/timm1816}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-79-98}
\elib{https://elibrary.ru/item.asp?id=45771404}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 317
\issue , suppl. 1
\pages S71--S89
\crossref{https://doi.org/10.1134/S0081543822030063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85144132425}
Linking options:
  • https://www.mathnet.ru/eng/timm1816
  • https://www.mathnet.ru/eng/timm/v27/i2/p79
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025