Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 2, Pages 238–248
DOI: https://doi.org/10.21538/0134-4889-2021-27-2-238-248
(Mi timm1829)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements

P. G. Surkovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (216 kB) Citations (1)
References:
Abstract: We consider the problem of finding the derivative of a function, which is a classical problem of mathematical analysis. The values of the function are measured continuously over a finite time interval with some error. We propose an algorithm for the approximate calculation of a Caputo fractional derivative from the measurement values based on the methods of feedback control theory. First, the problem of calculating the fractional derivative is replaced by an inverse problem for a control system. Then the method of dynamic inversion is applied to the inverse problem, which allows us to construct a real-time solution algorithm stable under information noises and computational errors. The algorithm is based on N. N. Krasovskii's extremal aiming method, which is widely known in the theory of guaranteed control, and on a local modification of A. N. Tikhonov's classical regularization method with a smoothing functional. The order of convergence of the proposed algorithm is obtained, and a numerical example illustrating the application of the developed technique for calculating Caputo fractional derivatives of specific functions in real time is considered.
Keywords: Caputo fractional derivative, reconstruction, incomplete information, error estimate.
Received: 05.03.2021
Revised: 02.04.2021
Accepted: 12.04.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2021, Volume 315, Issue 1, Pages S225–S235
DOI: https://doi.org/10.1134/S0081543821060183
Bibliographic databases:
Document Type: Article
UDC: 517.977+517.23
Language: Russian
Citation: P. G. Surkov, “Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 2, 2021, 238–248; Proc. Steklov Inst. Math., 315, suppl. 1 (2021), S225–S235
Citation in format AMSBIB
\Bibitem{Sur21}
\by P.~G.~Surkov
\paper Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 2
\pages 238--248
\mathnet{http://mi.mathnet.ru/timm1829}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-2-238-248}
\elib{https://elibrary.ru/item.asp?id=45771417}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\issue , suppl. 1
\pages S225--S235
\crossref{https://doi.org/10.1134/S0081543821060183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660522100020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85108287443}
Linking options:
  • https://www.mathnet.ru/eng/timm1829
  • https://www.mathnet.ru/eng/timm/v27/i2/p238
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025