|
On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
G. A. Akishevab a Kazakhstan Branch of Lomonosov Moscow State University, Nur-Sultan
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Abstract:
We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p,\tau,\theta}^{\bar{r}}B$, and study the best $M$-term approximation of a function $f\in L_{p,\tau}(\mathbb{T}^{m})$ by trigonometric polynomials. Order-exact estimates for the best $M$-term approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q,\tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$.
Keywords:
Lorentz space, Nikol'skii–Besov class, trigonometric polynomial, best $M$-term approximation.
Received: 24.08.2021 Revised: 14.10.2021 Accepted: 18.10.2021
Citation:
G. A. Akishev, “On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 7–26
Linking options:
https://www.mathnet.ru/eng/timm1879 https://www.mathnet.ru/eng/timm/v28/i1/p7
|
| Statistics & downloads: |
| Abstract page: | 366 | | Full-text PDF : | 102 | | References: | 100 | | First page: | 20 |
|