Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 1, Pages 247–256
DOI: https://doi.org/10.21538/0134-4889-2022-28-1-247-256
(Mi timm1896)
 

On the Weiss Conjecture. I

V. I. Trofimovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Let $\Gamma$ be a connected finite graph, and let $G$ be a vertex-transitive group of automorphisms of $\Gamma$ such that the stabilizer $G_x$ in $G$ of a vertex $x$ of $\Gamma$ induces on the neighborhood $\Gamma(x)$ of $x$ a primitive permutation group $G_x^{\Gamma(x)}$. The Weiss conjecture says that, under these assumptions, the order of $G_x$ is bounded from above by a number depending only on the order $|\Gamma(x)|$ of $\Gamma$. In a research whose first part is the present paper, we show that some general results of the theory of finite groups can be used to provide a largely uniform analysis for a number of cases of the Weiss conjecture (including some cases that were not considered before). Although this first part is introductory, it makes possible to use certain previous results to confirm the Weiss conjecture for all primitive groups $G_x^{\Gamma(x)}$ different from groups of AS type and from groups of PA type (constructed on the basis of groups of AS type).
Keywords: graph, group of automorphisms, Weiss conjecture.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00456
This work was supported by the Russian Foundation for Basic Research (project no. № 20-01-00456).
Received: 29.10.2021
Revised: 19.11.2021
Accepted: 13.12.2021
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2022, Volume 319, Issue 1, Pages S281–S290
DOI: https://doi.org/10.1134/S0081543822060244
Bibliographic databases:
Document Type: Article
UDC: 512.542+519.175.1
MSC: 05E18, 20B25
Language: Russian
Citation: V. I. Trofimov, “On the Weiss Conjecture. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 247–256; Proc. Steklov Inst. Math., 319, suppl. 1 (2022), S281–S290
Citation in format AMSBIB
\Bibitem{Tro22}
\by V.~I.~Trofimov
\paper On the Weiss Conjecture. I
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 1
\pages 247--256
\mathnet{http://mi.mathnet.ru/timm1896}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-1-247-256}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4412501}
\elib{https://elibrary.ru/item.asp?id=48072642}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\issue , suppl. 1
\pages S281--S290
\crossref{https://doi.org/10.1134/S0081543822060244}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905206300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127793647}
Linking options:
  • https://www.mathnet.ru/eng/timm1896
  • https://www.mathnet.ru/eng/timm/v28/i1/p247
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025