Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 249–257
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-249-257
(Mi timm1918)
 

Groups saturated with finite simple groups $L_3(2^n)$ and $L_4(2^l)$

A. A. Shlepkin

Siberian Federal University, Krasnoyarsk
References:
Abstract: Let $\mathfrak{M}$ be a certain set of groups. For a group $G$, we denote by $\mathfrak{M}(G)$ the set of all subgroups of $G$ that are isomorphic to elements of $\mathfrak{M}$. A group $G$ is said to be saturated with groups from $\mathfrak{M}$ if any finite subgroup of $G$ is contained in some element of $\mathfrak{M}(G)$. We prove that if $G$ is a periodic group or a Shunkov group and $G$ is saturated with groups from the set $\{L_3(2^n), L_4(2^l)\mid n=1,2,\ldots; l=1,\ldots, l_0\},$ where $l_0$ is fixed, then the set of elements of finite order from $G$ forms a group isomorphic to one of the groups from the set $\{L_3 (R), L_4(2^l)\mid l=1,\ldots, l\}$, where $R$ is an appropriate locally finite field of characteristic $2$.
Keywords: periodic group, Shunkov group, saturation of a group with a set of groups.
Funding agency Grant number
Russian Science Foundation 19-71-10017
This work was supported by the Russian Science Foundation (project no. 19-71-10017).
Received: 08.01.2022
Revised: 20.03.2022
Accepted: 28.03.2022
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20E25
Language: Russian
Citation: A. A. Shlepkin, “Groups saturated with finite simple groups $L_3(2^n)$ and $L_4(2^l)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 249–257
Citation in format AMSBIB
\Bibitem{Shl22}
\by A.~A.~Shlepkin
\paper Groups saturated with finite simple groups $L_3(2^n)$ and $L_4(2^l)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 249--257
\mathnet{http://mi.mathnet.ru/timm1918}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-249-257}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4453871}
\elib{https://elibrary.ru/item.asp?id=48585964}
Linking options:
  • https://www.mathnet.ru/eng/timm1918
  • https://www.mathnet.ru/eng/timm/v28/i2/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :55
    References:61
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025