Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 4, Pages 177–190
DOI: https://doi.org/10.21538/0134-4889-2022-28-4-177-190
(Mi timm1961)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics

A. Yu. Popovab, T. V. Rodionovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (233 kB) Citations (1)
References:
Abstract: Uniform with respect to the parameter $a\in(0,1)$ estimates of the functions $f_a(x)=\sum_{k=1}^{\infty}k^{-a}\cos kx$ and $g_a(x)=\sum_{k=1}^{\infty}k^{-a}\sin kx$ by the first terms of their asymptotic expansions $F_a(x)=\sin(\pi a/2)\Gamma(1-a)x^{a-1}$ and $G_a(x)=\cos(\pi a/2)\Gamma(1-a)x^{a-1}$ are obtained. Namely, it is proved that the inequalities
$$G_a(x)-\dfrac{x}{2}<g_a(x)<G_a(x)-\dfrac{x}{12},$$

$$F_a(x)+\zeta(a)+\dfrac{\zeta(3)}{4\pi^3}\,x^2\sin(\pi a/2)<f_a(x)<F_a(x)+\zeta(a)+\dfrac{1}{18}\,x^2\sin(\pi a/2)$$
are valid for all $a\in(0,1)$ and $x\in(0,\pi]$. \indent It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend $x/2$ cannot be replaced by $kx$ with any $k<1/2$: the estimate ceases to be fulfilled for sufficiently small $x$ and the values of $a$ close to $1$. In the upper estimate, the subtrahend $x/12$ cannot be replaced by $kx$ with any $k>1/12$: the estimate ceases to be fulfilled for the values of $a$ and $x$ close to $0$. In the lower estimate for the cosine series, the multiplier $\zeta(3)/(4\pi^3)$ of $x^2\sin(\pi a/2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for $x$ and $a$ close to $0$. In the upper estimate for the cosine series, the multiplier $1/18$ of $x^2\sin(\pi a/2)$ can probably be replaced by a smaller number but not by $1/24$: for every $a\in[0.98,1)$, such an estimate would not hold at the point $x=\pi$ as well as on a certain closed interval $x_0(a)\le x\le\pi$, where $x_0(a)\to0$ as $a\to1-$. The obtained results allow us to refine the estimates for the functions $f_a$ and $g_a$ established recently by other authors.
Keywords: special trigonometric series, polylogarithm, periodic zeta function.
Funding agency Grant number
Russian Science Foundation 22-21-00545
Russian Foundation for Basic Research 20-01-00584
The research of the first author (the results of Sections 2-3) was carried out at Moscow State University and supported by the Russian Science Foundation (project no. 22-21-00545). The research of the second author (the results of Section 6) was carried out at Moscow State University and supported by the Russian Foundation for Basic Research (project no. 20-01-00584).
Received: 19.05.2022
Revised: 29.07.2022
Accepted: 04.08.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2022, Volume 319, Issue 1, Pages S204–S217
DOI: https://doi.org/10.1134/S0081543822060189
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. Yu. Popov, T. V. Rodionov, “Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 4, 2022, 177–190; Proc. Steklov Inst. Math., 319, suppl. 1 (2022), S204–S217
Citation in format AMSBIB
\Bibitem{PopRod22}
\by A.~Yu.~Popov, T.~V.~Rodionov
\paper Uniform with Respect to the Parameter $a\in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 4
\pages 177--190
\mathnet{http://mi.mathnet.ru/timm1961}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-4-177-190}
\elib{https://elibrary.ru/item.asp?id=49866459}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\issue , suppl. 1
\pages S204--S217
\crossref{https://doi.org/10.1134/S0081543822060189}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905217200017}
Linking options:
  • https://www.mathnet.ru/eng/timm1961
  • https://www.mathnet.ru/eng/timm/v28/i4/p177
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025