Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 1, Pages 156–169
DOI: https://doi.org/10.21538/0134-4889-2024-30-1-156-169
(Mi timm2069)
 

Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$

V. M. Polyakov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We consider vector bundles of rank 2 with a trivial generic fiber on the projective line over $\mathbb{Z}$. For such bundles, a new invariant is constructed — the Reidemeister torsion, which is an analog of the classical Reidemeister torsion from topology. For vector bundles of rank 2 with a trivial generic fiber and jumps of height 1, that is, for the bundles that are isomorphic to $\mathcal{O}^2$ in the fiber over $\mathbb{Q}$ and are isomorphic to $\mathcal{O} ^2$ or $\mathcal{O}(-1)\oplus\mathcal{O}(1)$ over each closed point Spec$(\mathbb{Z})$, we calculate this invariant and show that it, together with the discriminant of the bundle, completely determines such a bundle.
Keywords: vector bundle, arithmetic surface, projective line, torsion.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant for the creation and development of the Leonhard Euler International Mathematical Institute, agreement no. 075-15-2022-289).
Received: 29.11.2023
Revised: 19.12.2023
Accepted: 25.12.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2024, Volume 325, Issue 1, Pages S155–S167
DOI: https://doi.org/10.1134/S008154382403012X
Bibliographic databases:
Document Type: Article
UDC: 512.75
MSC: 14G40
Language: Russian
Citation: V. M. Polyakov, “Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 1, 2024, 156–169; Proc. Steklov Inst. Math., 325, suppl. 1 (2024), S155–S167
Citation in format AMSBIB
\Bibitem{Pol24}
\by V.~M.~Polyakov
\paper Reidemeister torsion for vector bundles on $\mathbb{P}^1_\mathbb{Z}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 1
\pages 156--169
\mathnet{http://mi.mathnet.ru/timm2069}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-1-156-169}
\elib{https://elibrary.ru/item.asp?id=61885726}
\edn{https://elibrary.ru/cczlnd}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 325
\issue , suppl. 1
\pages S155--S167
\crossref{https://doi.org/10.1134/S008154382403012X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85201792769}
Linking options:
  • https://www.mathnet.ru/eng/timm2069
  • https://www.mathnet.ru/eng/timm/v30/i1/p156
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025