|
An optimal interpolation problem with hermite information in the sobolev class $W^{n}_{1}([-1,1])$
Dandan Guoa, Yongping Liua, Guiqiao Xub a Beijing Normal University, Beijing
b Tianjin Normal University
Abstract:
In this paper, we study the optimal interpolation problem in the Sobolev class $W^{n}_{1}([-1,1])$, $n\in\mathbb N$, with Hermite information. By some properties of spline functions, we proved that the Lagrange interpolation based on the extreme points of Chebyshev polynomials is optimal for $W^{n}_{1}([-1,1])$, and we obtained the approximation error for the optimal interpolation problem.
Keywords:
Hermite interpolation, spline function, optimal interpolation, Sobolev class.
Received: 17.08.2021 Revised: 29.12.2023 Accepted: 10.01.2024
Citation:
Dandan Guo, Yongping Liu, Guiqiao Xu, “An optimal interpolation problem with hermite information in the sobolev class $W^{n}_{1}([-1,1])$”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 1, 2024, 270–279
Linking options:
https://www.mathnet.ru/eng/timm2077 https://www.mathnet.ru/eng/timm/v30/i1/p270
|
|