Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, Volume 30, Number 3, Pages 191–206
DOI: https://doi.org/10.21538/0134-4889-2024-30-3-191-206
(Mi timm2114)
 

This article is cited in 1 scientific paper (total in 1 paper)

Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem

V. I. Maksimova, Yu. S. Osipovbc

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
Full-text PDF (245 kB) Citations (1)
References:
Abstract: The problem of tracking an unknown nonsmooth in time distributed disturbance of a parabolic inclusion describing the two-phase Stefan problem is studied. The problem is reduced to the problem of open-loop control of some appropriately chosen auxiliary system. The control in this system tracks the unknown disturbance in the mean square, and its construction is based on the results of inaccurate measurements of solutions to the given inclusion and to the auxiliary system. Two algorithms for solving the problem that are stable to noise and calculation errors are presented. The algorithms are based on an appropriate modification of Krasovskii's principle of extremal shift known in the theory of guaranteed control.
Keywords: disturbance tracking, parabolic inclusion.
Received: 27.05.2024
Revised: 07.06.2024
Accepted: 10.06.2024
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2024, Volume 327, Issue 1, Pages S182–S197
DOI: https://doi.org/10.1134/S0081543824070137
Bibliographic databases:
Document Type: Article
UDC: 517.2, 519.63
MSC: 34A34, 93C20
Language: Russian
Citation: V. I. Maksimov, Yu. S. Osipov, “Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 3, 2024, 191–206; Proc. Steklov Inst. Math., 327, suppl. 1 (2024), S182–S197
Citation in format AMSBIB
\Bibitem{MakOsi24}
\by V.~I.~Maksimov, Yu.~S.~Osipov
\paper Extremal shift in the problem of tracking a disturbance in a parabolic inclusion describing the two-phase Stefan problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2024
\vol 30
\issue 3
\pages 191--206
\mathnet{http://mi.mathnet.ru/timm2114}
\crossref{https://doi.org/10.21538/0134-4889-2024-30-3-191-206}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4803984}
\elib{https://elibrary.ru/item.asp?id=69053421}
\edn{https://elibrary.ru/iejfmn}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 327
\issue , suppl. 1
\pages S182--S197
\crossref{https://doi.org/10.1134/S0081543824070137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001321037800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105000066621}
Linking options:
  • https://www.mathnet.ru/eng/timm2114
  • https://www.mathnet.ru/eng/timm/v30/i3/p191
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025