Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, Volume 31, Number 1, Pages 210–227
DOI: https://doi.org/10.21538/0134-4889-2025-31-1-210-227
(Mi timm2164)
 

Kinetic maximal $L^{p}$-regularity for nonlocal Kolmogorov equation and application

V. B. Shakhmurovabc

a Antalya Bilim University
b Azerbaijan State Economic University
c Western Caspian University
References:
Abstract: We study the linear and nonlinear variable coefficients Kolmogorov equations. The equations include the abstract operator $A=A\left(x\right) $ in a Fourier type Banach space $E$ and convolution terms. Here, the kinetic maximal $L^{p}$-regularity for the linear equatıon is derived in terms of $ E$-valued Sobolev spaces. Moreover, we show that the solution $u$ is also regular in time and space variables when $u$ is assumed to have a certain amount of regularity in velocity. Finally, the kinetic maximal $L^{p}$ -regularity for the linear equation can be used to obtain local existence and uniqueness of solutions to a quasilinear nonlocal Kolmogorov type kinetic equation.
Keywords: Kinetic maximal regularity, Kolmogorov equation, dissipative operators, anisotropic Sobolev spaces, optimal $L^{p}$ -estimates, instantaneous smoothing.
Received: 05.09.2024
Revised: 15.11.2024
Accepted: 18.11.2024
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. B. Shakhmurov, “Kinetic maximal $L^{p}$-regularity for nonlocal Kolmogorov equation and application”, Trudy Inst. Mat. i Mekh. UrO RAN, 31, no. 1, 2025, 210–227
Citation in format AMSBIB
\Bibitem{Sha25}
\by V.~B.~Shakhmurov
\paper Kinetic maximal $L^{p}$-regularity for nonlocal Kolmogorov equation and application
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2025
\vol 31
\issue 1
\pages 210--227
\mathnet{http://mi.mathnet.ru/timm2164}
\crossref{https://doi.org/10.21538/0134-4889-2025-31-1-210-227}
\elib{https://elibrary.ru/item.asp?id=80441893}
\edn{https://elibrary.ru/jlfwbi}
Linking options:
  • https://www.mathnet.ru/eng/timm2164
  • https://www.mathnet.ru/eng/timm/v31/i1/p210
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :3
    References:11
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025