|
|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 55–59
(Mi timm720)
|
|
|
|
Note on estimates for the growth order of sequences of multiple rectangular Fourier sums
N. Yu. Antonovab a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
Abstract:
Let $\{S_{\mathbf n_k}(f,\mathbf x)\}_{k=1}^\infty$ be some sequence of rectangular partial sums of the multiple trigonometric Fourier series of a function $f$, and let $\{\lambda_k\}_{k=1}^\infty$ be a nondecreasing sequence of positive numbers. We investigate conditions on the belonging of the function $f$ to the classes $\varphi (L)$ under which estimates of the following form are possible:
$$
S_{\mathbf n_k}(f,\mathbf x)=o(\lambda_k )\quad\text{a.e.}
$$
where the right-hand side depends on $k$ only.
Keywords:
multiple trigonometric Fourier series, growth order estimates.
Received: 30.03.2011
Citation:
N. Yu. Antonov, “Note on estimates for the growth order of sequences of multiple rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 55–59; Proc. Steklov Inst. Math., 277, suppl. 1 (2012), S4–S8
Linking options:
https://www.mathnet.ru/eng/timm720 https://www.mathnet.ru/eng/timm/v17/i3/p55
|
|