Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 134–141 (Mi timm759)  

This article is cited in 23 scientific papers (total in 23 papers)

Elementary nets in linear groups

V. A. Koibaevab

a South Mathematical Institute of VSC RAS
b North-Ossetia State University
References:
Abstract: For an elementary net (a net without diagonal) of additive subgroups of an arbitrary commutative ring, we define a derivative net, the closure of the net, and a net associated with the elementary group. A factorization of the elementary group is presented and used to construct an example of a closed (admissible) net that cannot completed to the (complete) net.
Keywords: net, elementary net, closed net, net group, elementary group, transvection.
Received: 16.03.2011
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: V. A. Koibaev, “Elementary nets in linear groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 134–141
Citation in format AMSBIB
\Bibitem{Koi11}
\by V.~A.~Koibaev
\paper Elementary nets in linear groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 134--141
\mathnet{http://mi.mathnet.ru/timm759}
\elib{https://elibrary.ru/item.asp?id=17870432}
Linking options:
  • https://www.mathnet.ru/eng/timm759
  • https://www.mathnet.ru/eng/timm/v17/i4/p134
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025