Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 1, Pages 82–95 (Mi timm781)  

This article is cited in 7 scientific papers (total in 7 papers)

One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials

A. G. Babenkoab, Yu. V. Kryakinc, V. A. Yudind

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University
c Mathematical Institute, University of Wroclaw
d Moscow Power Engineering Institute (Technical University)
Full-text PDF (310 kB) Citations (7)
References:
Abstract: For arbitrary $0<h\le\pi$, the value of the best one-sided integral approximation of the characteristic function of the interval $(-h,h)$ by trigonometric polynomials of a given degree is found.
Keywords: one-sided integral approximation of functions by polynomials.
Received: 26.08.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2013, Volume 280, Issue 1, Pages S39–S52
DOI: https://doi.org/10.1134/S0081543813020041
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 1, 2012, 82–95; Proc. Steklov Inst. Math., 280, suppl. 1 (2013), S39–S52
Citation in format AMSBIB
\Bibitem{BabKryYud12}
\by A.~G.~Babenko, Yu.~V.~Kryakin, V.~A.~Yudin
\paper One-sided approximation in~$L$ of the characteristic function of an interval by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 1
\pages 82--95
\mathnet{http://mi.mathnet.ru/timm781}
\elib{https://elibrary.ru/item.asp?id=17358680}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 280
\issue , suppl. 1
\pages S39--S52
\crossref{https://doi.org/10.1134/S0081543813020041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317236500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876010362}
Linking options:
  • https://www.mathnet.ru/eng/timm781
  • https://www.mathnet.ru/eng/timm/v18/i1/p82
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025