Proceedings of the Institute for System Programming of the RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of ISP RAS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute for System Programming of the RAS, 2018, Volume 30, Issue 1, Pages 69–88
DOI: https://doi.org/10.15514/ISPRAS-2018-30(1)-5
(Mi tisp296)
 

Asynchronous distributed algorithms for static and dynamic directed rooted graphs

I. B. Burdonova, A. S. Kossatcheva, V. V. Kuliaminbac, A. N. Tomilinba, V. Z. Shnitmanda

a Ivannikov Institute for System Programming of the RAS
b Lomonosov Moscow State University
c National Research University Higher School of Economics (HSE)
d Moscow Institute of Physics and Technology (State University)
References:
Abstract: The paper provides a review of distributed graph algorithms research conducted by authors. We consider an asynchronous distributed system model represented by a strongly connected directed rooted graph with bounded edge capacity (in a sense that only a bounded number of messages can be sent through an edge in a given time interval). A graph can be static or dynamic, i.e. changing. For a static graph we propose a spanning (in- and out-) tree construction algorithm of time complexity $O(n/k+d)$, requiring $O(nd\log\Delta^+)$ message size and the same size of memory of each computing agent located in graph vertex, where $n$ is the number of vertices of the graph, $k$ is the capacity of an edge, $d$ is the maximum length of simple path in the graph, $\Delta^+$ is the maximum outdegree of the vertices. The spanning trees constructed can be used in distributed computation of a function of the multiset of values assigned to graph vertices in a time not greater than $3d$. In a dynamic graph we suppose that $k=1$ and an edge can appear, disappear, or change its end. We propose a dynamic graph monitoring algorithm than delivers information on any change to the root of the graph in $O(n)$ or $O(d)$ after the changes are stopped. We also propose graph exploration and marking algorithm with time complexity $O(n)$. The marking provided by it is used in distributed computation of a function of the multiset of values assigned to dynamic graph vertices, which can be performed in time $O(n^2)$ with messages of size $O(\log n)$ or in time $O(n)$ with messages of size $O(n\log n)$.
Keywords: distributed algorithms, asynchronous systems, directed graph, rooted graph, dynamic graph, parallel computations.
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. B. Burdonov, A. S. Kossatchev, V. V. Kuliamin, A. N. Tomilin, V. Z. Shnitman, “Asynchronous distributed algorithms for static and dynamic directed rooted graphs”, Proceedings of ISP RAS, 30:1 (2018), 69–88
Citation in format AMSBIB
\Bibitem{BurKosKul18}
\by I.~B.~Burdonov, A.~S.~Kossatchev, V.~V.~Kuliamin, A.~N.~Tomilin, V.~Z.~Shnitman
\paper Asynchronous distributed algorithms for static and dynamic directed rooted graphs
\jour Proceedings of ISP RAS
\yr 2018
\vol 30
\issue 1
\pages 69--88
\mathnet{http://mi.mathnet.ru/tisp296}
\crossref{https://doi.org/10.15514/ISPRAS-2018-30(1)-5}
\elib{https://elibrary.ru/item.asp?id=32663694}
Linking options:
  • https://www.mathnet.ru/eng/tisp296
  • https://www.mathnet.ru/eng/tisp/v30/i1/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute for System Programming of the RAS
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025